Topological network alignment uncovers biological function and phylogeny.

نویسندگان

  • Oleksii Kuchaiev
  • Tijana Milenkovic
  • Vesna Memisevic
  • Wayne Hayes
  • Natasa Przulj
چکیده

Sequence comparison and alignment has had an enormous impact on our understanding of evolution, biology and disease. Comparison and alignment of biological networks will probably have a similar impact. Existing network alignments use information external to the networks, such as sequence, because no good algorithm for purely topological alignment has yet been devised. In this paper, we present a novel algorithm based solely on network topology, that can be used to align any two networks. We apply it to biological networks to produce by far the most complete topological alignments of biological networks to date. We demonstrate that both species phylogeny and detailed biological function of individual proteins can be extracted from our alignments. Topology-based alignments have the potential to provide a completely new, independent source of phylogenetic information. Our alignment of the protein-protein interaction networks of two very different species-yeast and human-indicate that even distant species share a surprising amount of network topology, suggesting broad similarities in internal cellular wiring across all life on Earth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrative network alignment reveals large regions of global network similarity in yeast and human

MOTIVATION High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising effic...

متن کامل

Topology-function conservation in protein–protein interaction networks

MOTIVATION Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide ...

متن کامل

Optimal Network Alignment with Graphlet Degree Vectors

Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two ...

متن کامل

SANA: Simulated Annealing Network Alignment Applied to Biological Networks

The alignment of biological networks has the potential to teach us as much about biology and disease as has sequence alignment. Sequence alignment can be optimally solved in polynomial time. In contrast, network alignment is NP -hard, meaning optimal solutions are impossible to find, and the quality of found alignments depend strongly upon the algorithm used to create them. Every network alignm...

متن کامل

L-GRAAL: Lagrangian graphlet-based network aligner

MOTIVATION Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 7 50  شماره 

صفحات  -

تاریخ انتشار 2010